- #1
MrRobot
- 5
- 0
Homework Statement
Hi, am having difficulty with the Linear algebra in QM. We have been given a problem set and one of the questions am struggling with is as follows:
Consider the space of all linear functions ##f(x) = ax + b## (x real) defined over the range ## -1 < x < 1 ##, with the scalar product ## \int_{-1}^{1} g(x)f(x) dx ##.
Show that any arbitrary function ## f(x) = ax + b ## can be written as ## f(x) = c_1\psi_1(x) + c_2\psi_2(x) ##, finding ## c_1 ## and ## c_2 ## using the scalar product. (i.e. show that ## \psi_1(x) ## and ## \psi_2(x) ## form a basis). ## \psi_1(x) = 1/ \sqrt{2} ##, ## \psi_2(x) = \sqrt{3/2}x ##
So i know that functions are complete in Hilbert Space and so can be written as ## f(x) = \sum_{n = 1}^{\infty} c_n f_{n}(x) ##, but now am not sure how to use this to answer the question or if am suppose to use it, please help. THANK YOU IN ADVANCE.