- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the proof of the following proposition:
Let $X \neq \varnothing$. $X$ is at most countable iff there is a $f: \omega \overset{\text{surjective}}{\rightarrow} X$.
Proof:
"$\Rightarrow$" If $X$ is infinite, then obviously there is a $f: \omega \overset{\text{surjective}}{\rightarrow} X$.
If $X$ is finite then $X \sim n$ for some $n \in \omega, n \neq 0$ since $X \neq \varnothing$.
We define the extension $f$ of $g$ at $\omega$:
$$f(k)=g(k) \text{ for } k<n \\ f(k)=g(0) \text{ for } k \geq n$$
and obviously $f: \omega \overset{\text{surjective}}{\rightarrow} X$
"$\Leftarrow$" We assume that $f: \omega \overset{\text{surjective}}{\rightarrow} X$.
For each $a \in A$ we define $S_a=f^{-1}(\{a\})$.
Since $f: \omega \overset{\text{surjective}}{\rightarrow} X$ the set $S_a$ is nonempty for each $a \in X$.
So there is the $\min S_a$ for each $a \in X$. We define $h(a)=\min S_a$ for all $a \in X$.
For $a \neq b$ with $a,b \in X$ we have $h(a) \neq h(b)$ since $S_a \neq S_b$. So $h: X \overset{1-1}{\rightarrow} \omega$
Thus, $X$ is at most coutable.
I haven't understood why we can define $S_a=f^{-1}(\{a\})$.
We know that if $n \in \omega$ and $x \in X$, it can be $f(n)=x$.
But in this case we take $f(S_a)=\{a\}$.
Do we assume that $\{a\} \in X$ ?
I am looking at the proof of the following proposition:
Let $X \neq \varnothing$. $X$ is at most countable iff there is a $f: \omega \overset{\text{surjective}}{\rightarrow} X$.
Proof:
"$\Rightarrow$" If $X$ is infinite, then obviously there is a $f: \omega \overset{\text{surjective}}{\rightarrow} X$.
If $X$ is finite then $X \sim n$ for some $n \in \omega, n \neq 0$ since $X \neq \varnothing$.
We define the extension $f$ of $g$ at $\omega$:
$$f(k)=g(k) \text{ for } k<n \\ f(k)=g(0) \text{ for } k \geq n$$
and obviously $f: \omega \overset{\text{surjective}}{\rightarrow} X$
"$\Leftarrow$" We assume that $f: \omega \overset{\text{surjective}}{\rightarrow} X$.
For each $a \in A$ we define $S_a=f^{-1}(\{a\})$.
Since $f: \omega \overset{\text{surjective}}{\rightarrow} X$ the set $S_a$ is nonempty for each $a \in X$.
So there is the $\min S_a$ for each $a \in X$. We define $h(a)=\min S_a$ for all $a \in X$.
For $a \neq b$ with $a,b \in X$ we have $h(a) \neq h(b)$ since $S_a \neq S_b$. So $h: X \overset{1-1}{\rightarrow} \omega$
Thus, $X$ is at most coutable.
I haven't understood why we can define $S_a=f^{-1}(\{a\})$.
We know that if $n \in \omega$ and $x \in X$, it can be $f(n)=x$.
But in this case we take $f(S_a)=\{a\}$.
Do we assume that $\{a\} \in X$ ?