- #1
squire636
- 39
- 0
Let p be an odd prime. Let f(a) be a function defined for a prime to p satisfying the following properties:
(i) f(a) only takes the values ±1.
(ii) If a=b (mod p), then f(a)=f(b).
(iii) f(ab) = f(a)f(b) for all a and b.
Show that either f(a) = 1 for all a or that f(a) = ([itex]\frac{a}{b}[/itex])
(i) f(a) only takes the values ±1.
(ii) If a=b (mod p), then f(a)=f(b).
(iii) f(ab) = f(a)f(b) for all a and b.
Show that either f(a) = 1 for all a or that f(a) = ([itex]\frac{a}{b}[/itex])