- #1
skippenmydesig
- 10
- 0
We only have the epsilon-delta definition to work with for these.
Prove that f is integrable and verify the value. On [0,1] f(x)=1 if x=1/2 else 0. \(\displaystyle \int_{0}^{1} \,f\) =0
Prove: If f is integrable on [0,1] then \(\displaystyle \lim_{{n}\to{\infty}}\ \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n})\) = \(\displaystyle \int_{0}^{1} \,f\) .
Prove that f is integrable and verify the value. On [0,1] f(x)=1 if x=1/2 else 0. \(\displaystyle \int_{0}^{1} \,f\) =0
Prove: If f is integrable on [0,1] then \(\displaystyle \lim_{{n}\to{\infty}}\ \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n})\) = \(\displaystyle \int_{0}^{1} \,f\) .