- #1
EngWiPy
- 1,368
- 61
Hello,
By definition, the forward Laplace transform of a function [tex]f(x)[/tex] is:
[tex]\mathcal{L}\left\{f(x)\right\}=\int_0^{\infty}\text{e}^{-sx}f(x)\,dx[/tex].
Can we say the same for the function [tex]f\left(\frac{1}{x}\right)[/tex], i.e.:
[tex]\mathcal{L}\left\{f\left(\frac{1}{x}\right)\right\}=\int_0^{\infty}\text{e}^{-\frac{s}{x}}f\left(\frac{1}{x}\right)\,dx[/tex].??
Thanks in advance
By definition, the forward Laplace transform of a function [tex]f(x)[/tex] is:
[tex]\mathcal{L}\left\{f(x)\right\}=\int_0^{\infty}\text{e}^{-sx}f(x)\,dx[/tex].
Can we say the same for the function [tex]f\left(\frac{1}{x}\right)[/tex], i.e.:
[tex]\mathcal{L}\left\{f\left(\frac{1}{x}\right)\right\}=\int_0^{\infty}\text{e}^{-\frac{s}{x}}f\left(\frac{1}{x}\right)\,dx[/tex].??
Thanks in advance