- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks to those who participated in last week's POTW! Here's this week's problem.
-----
Problem: Let $G=\{a+b\sqrt{2} : a,b\in\mathbb{Q}\}$ and let $\displaystyle H=\left\{\begin{bmatrix} a & 2b \\ b & a\end{bmatrix} : a,b\in\mathbb{Q}\right\}$ be two groups. Show that $G$ and $H$ are isomorphic as groups under addition; i.e. find a bijective map $\varphi:G\rightarrow H$ such that for any $x,y\in G$, $\varphi(x+y) = \varphi(x) + \varphi(y)$, where $\varphi(x),\varphi(y)\in H$.
Are $G$ and $H$ isomorphic under multiplication? If yes, prove it. If not, provide a counterexample.
-----
-----
Problem: Let $G=\{a+b\sqrt{2} : a,b\in\mathbb{Q}\}$ and let $\displaystyle H=\left\{\begin{bmatrix} a & 2b \\ b & a\end{bmatrix} : a,b\in\mathbb{Q}\right\}$ be two groups. Show that $G$ and $H$ are isomorphic as groups under addition; i.e. find a bijective map $\varphi:G\rightarrow H$ such that for any $x,y\in G$, $\varphi(x+y) = \varphi(x) + \varphi(y)$, where $\varphi(x),\varphi(y)\in H$.
Are $G$ and $H$ isomorphic under multiplication? If yes, prove it. If not, provide a counterexample.
-----
Last edited: