MHB Is g(n)=8n/15 Only When n Is Divisible by 3 and 5?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Function Proof
AI Thread Summary
The discussion centers on proving that g(n) = 8n/15 if and only if n is divisible by 3 and 5, and by no other primes, using the Euler totient function. Participants suggest rewriting n as a product of powers of 3 and 5, leveraging the multiplicative property of the totient function. They emphasize that for g(n) to equal 8n/15, the product of the factors (1 - 1/p) must equal 8/15, which is only satisfied when n is composed solely of the primes 3 and 5. The proof involves demonstrating that any additional prime factors would alter the result. The conclusion confirms that the condition holds true exclusively for n being a product of 3 and 5.
Poirot1
Messages
243
Reaction score
0

Show that g(n)=8n/15 iff n is divisible by 3 and 5 and by no other primes, where g is the euler totient function.

How to go about the proof?




 
Mathematics news on Phys.org
Re: totient function proof

Rewrite $N$ as a product of powers of $3$ and $5$. Use the multiplicative property, and what is the totient of a prime power?

Full derivation below.

If $N = 3^m \cdot 5^n$ then $\varphi(N) = \varphi(3^m \cdot 5^n)$. Using the multiplicative property:

$$\varphi(3^m \cdot 5^n) = \varphi(3^m) \cdot \varphi(5^n)$$
And you know that for prime $p$ we have:

$$\varphi(p^k) = p^{k - 1} \cdot (p - 1)$$
And so:

$$\varphi(3^m) \cdot \varphi(5^n) = \left ( 3^{m - 1} \cdot (3 - 1) \right ) \cdot \left ( 5^{n - 1} \cdot (5 - 1) \right ) = 8 \cdot 3^{m - 1} \cdot 5^{n - 1}$$
And...

$$3^m \cdot 5^n = N ~ ~ ~ \implies ~ ~ ~ 3^m \cdot 5^n \cdot \left ( 3^{-1} \cdot 5^{-1} \right ) = 3^{m - 1} \cdot 5^{n - 1} = N \cdot 15^{-1}$$
And we conclude:

$$\varphi(N) = 8 \cdot 3^{m - 1} \cdot 5^{n - 1} = 8 \cdot N \cdot 15^{-1} = \frac{8}{15} \cdot N$$
 
Last edited:
Re: totient function proof

first n should be divisible by 3 and 5 since phi(n) is the number of the positive integers relatively prime with n
so phi(n) is integer for all n.
suppose n is divisible by another prime p, say
n = 3^r 5^s p^t...(1)
g is multiplicative
g(n) = g(3^r)\cdot g(5^s)\cdot g(p^t)

g(n) = 3^r \left( 1 - \frac{1}{3} \right) 5^s \left(1 - \frac{1}{5} \right)g(p^t)

g(n) = 3^r \left( \frac{2}{3} \right) 5^s \left(\frac{4}{5} \right) g(p^t)

g(n) =3^r\cdot 5^s \left( \frac{8}{15} \right) g(p^t)

from (1)
3^r\cdot 5^s = \frac{n}{p^t}

g(n) = \frac{8n}{15} \frac{g(p^t)}{p^t}
we want p such that g(p^t) = p^t , that's true for 1 just
 
Poirot said:

Show that g(n)=8n/15 iff n is divisible by 3 and 5 and by no other primes, where g is the euler totient function.

How to go about the proof?


The basic formula of the Euler's Totiens Function is...

$\displaystyle \varphi (n) = n\ \prod _{p|n} (1-\frac{1}{p})$ (1)

... so that Your equation...

$\displaystyle \varphi(n)= \frac{8\ n}{15}$ (2)

... is satisfied if...

$\displaystyle \prod _{p|n} (1-\frac{1}{p}) = \frac{8}{15}$ (3)

... and that happens only for $\displaystyle n= 3 \cdot 5 = 15$ ...

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top