- #1
Guest2
- 193
- 0
Decide which of the following is true or false. If false, provide a counterexample.
(a) For any integer $n$, $\gcd(n, n+1) = 1$.
(b) For any integer $n$, $\gcd(n, n+2) = 2$.
(c) For any integer $n$, $\gcd(n, n+2) = 1$ or $2$.
(d) For all integers $n, m:$ $\gcd(n, n^2+m) = \gcd(n,m)$.
I think (a) is true and (b) is false since $\gcd(3,5) = 1.$
(a) For any integer $n$, $\gcd(n, n+1) = 1$.
(b) For any integer $n$, $\gcd(n, n+2) = 2$.
(c) For any integer $n$, $\gcd(n, n+2) = 1$ or $2$.
(d) For all integers $n, m:$ $\gcd(n, n^2+m) = \gcd(n,m)$.
I think (a) is true and (b) is false since $\gcd(3,5) = 1.$