MHB Is $\gcd(n, n+2) = 1$ or $2$ for any integer $n$?

AI Thread Summary
The discussion centers on the properties of the greatest common divisor (gcd) for various integer pairs. It concludes that for any integer n, gcd(n, n+1) is always 1, making statement (a) true. Statement (b) is deemed false, as gcd(n, n+2) can be either 1 or 2, depending on whether n is odd or even. Statement (c) is confirmed as true, since gcd(n, n+2) equals gcd(n, 2), which is 2 for even n and 1 for odd n. Finally, statement (d) is validated using the gcd identity, confirming that gcd(n, n^2+m) equals gcd(n,m) for all integers n and m.
Guest2
Messages
192
Reaction score
0
Decide which of the following is true or false. If false, provide a counterexample.

(a) For any integer $n$, $\gcd(n, n+1) = 1$.

(b) For any integer $n$, $\gcd(n, n+2) = 2$.

(c) For any integer $n$, $\gcd(n, n+2) = 1$ or $2$.

(d) For all integers $n, m:$ $\gcd(n, n^2+m) = \gcd(n,m)$.

I think (a) is true and (b) is false since $\gcd(3,5) = 1.$
 
Mathematics news on Phys.org
Guest said:
I think (a) is true and (b) is false since $\gcd(3,5) = 1.$
I agree.

Guest said:
(d) For all integers $n, m:$ $\gcd(n, n^2+m) = \gcd(n,m)$.
This can be answered using the identity $\gcd(a,b)=\gcd(a,b-a)$.
 
Evgeny.Makarov said:
I agree.

This can be answered using the identity $\gcd(a,b)=\gcd(a,b-a)$.
Thank you. Is it

$\gcd(n, n^2+m) = \gcd(n, n^2+m-n) =\gcd(n, n^2+m-n-n)= \cdots = \gcd(n, n^2+m-\ell)$ where $\displaystyle \ell = \sum_{k=1}^{n}n = n^2$?
 
Yes, your reasoning for (d) is correct.
 
Evgeny.Makarov said:
Yes, your reasoning for (d) is correct.
For (c) I get $\gcd(n, n+2) = \gcd(n, 2)$ which is $2$ if $n$ is even, or $1$ if $n$ is odd. So it's true, I think.
 
Guest said:
For (c) I get $\gcd(n, n+2) = \gcd(n, 2)$ which is $2$ if $n$ is even, or $1$ if $n$ is odd. So it's true, I think.
Yes.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top