- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Let $\displaystyle H=\left\{\left.\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right| \,a,b\in\mathbb{Z}_3\right\}$. Show that $H$ is an abelian group of order 9. Is $H\cong \mathbb{Z}_9$ or is $H\cong \mathbb{Z}_3\oplus\mathbb{Z}_3$?
(In this problem, $\cong$ means "isomorphic to".)
-----
-----
Problem: Let $\displaystyle H=\left\{\left.\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right| \,a,b\in\mathbb{Z}_3\right\}$. Show that $H$ is an abelian group of order 9. Is $H\cong \mathbb{Z}_9$ or is $H\cong \mathbb{Z}_3\oplus\mathbb{Z}_3$?
(In this problem, $\cong$ means "isomorphic to".)
-----