MHB Is induction a circular way to define natural numbers?

AI Thread Summary
The discussion centers on the philosophical implications of defining natural numbers through Peano's axioms and the potential circularity in using induction to delineate the set of natural numbers. It highlights that while Peano arithmetic does not present a formal contradiction, the reliance on induction may imply a circular reasoning when quantifiers are involved. A quote from Daniel Leivant emphasizes that the meaning of formulas with quantifiers presupposes the definition of natural numbers, raising concerns about the validity of using induction in this context. The conversation also touches on the uniqueness of Peano models and the existence of non-isomorphic models, suggesting complexities in understanding the foundational aspects of natural numbers. Ultimately, the discussion seeks clarity on the nature of circularity in the definitions provided by Peano's axioms.
Evgeny.Makarov
Gold Member
MHB
Messages
2,434
Reaction score
4
Sorry about the intriguing title; this is just a continuation of the discussion in https://driven2services.com/staging/mh/index.php?threads/5216/ from the Discrete Math forum. The original question there was how to introduce mathematical induction in a clear and convincing way. Since the current discussion about the foundations of mathematics is clearly off-topic, I decided to continue it in a separate thread.

ModusPonens said:
I'm sure you are aware how the set of finite ordinals is constructed. So why is there a contradiction?
Obviously, there is no formal contradiction in Peano arithmetic or in the set-theoretic construction of natural numbers, or at least none has been found yet. The question is about a philosophical justification of Peano arithmetic.

Here is a quotation from Daniel Leivant, Intrinsic Logic and Computational Complexity, in LNCS 960, p. 192.

"The set $\mathbb{N}$ of natural numbers is implicitly defined by Peano's axioms: the generative axioms [$0\in\mathbb{N}$ and $n\in\mathbb{N}\to Sn\in\mathbb{N}$] convey a lower bound on the extension of $\mathbb{N}$, and the induction schema approximates the upper bound. However, as observed in (Edward Nelson, Predicative Arithmetic, Princeton University Press, 1986), if a formula $\varphi$ has quantifiers, then its meaning presupposes the delineation of $\mathbb{N}$ as the domain of the quantifiers, and therefore using induction over $\varphi$ as a component of the delineation of $\mathbb{N}$ is a circular enterprise."

As I said, I don't claim that I fully understand this.

ModusPonens said:
We can prove the Peano axioms in this set, from set theory. That means that there are natural numbers (let's not focus on what "are" means :D ). Now, is the problem proving the uniqueness of a Peano model, modulo isomorphism?
Peano axioms (a first-order theory) has infinitely many non-isomorphic models (a corollary of the compactness theorem). However, it is easy to construct a single second-order formula whose only model are natural numbers.
 
Mathematics news on Phys.org
Hello

Sorry for my poor choice of words in a discussion about mathematics. I meant "where is the circularity?", not contradiction.

I may be way out of my league, but my question is the following: there are the Peano axioms. They don't define the natural numbers. It seems to me that you have a model which fits the axioms.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top