- #1
vcsharp2003
- 897
- 177
- Homework Statement
- 4. If ##A## and ##B## are two matrices such that ##AB = B## and ## BA = A##, then ##A^2
+ B^2## equals:
(a) ##A + B##
(b) ##2BA##
(c) ##2AB##
(d)##BA##
- Relevant Equations
- ##AI = IA = A## where ##I## is identity matrix and ##A## is any square matrix whose product with identity matrix is defined
Since ##AB = B##, so matrix ##A## is an identity matrix.
Similarly, since ##BA = A## so matrix ##B## is an identity matrix.
Also, we can say that ##A^2 = AA=IA= A## and ##B^2 = BB=IB= B##.
Therefore, ##A^2 + B^2 = A + B## which means (a) is a correct answer.
Also we can say that ##A^2 + B^2 = I^2 + I^2 = II + II = AB + AB = 2AB##,
and that ##A^2 + B^2 = I^2 + I^2 = II + II = BA + BA = 2BA##. From these conclusions, it also follows that (b) and (c) are correct answers.
Thus, according to me (a),(b) and (c) are correct answers. But the correct answer is given as (a) only.
Similarly, since ##BA = A## so matrix ##B## is an identity matrix.
Also, we can say that ##A^2 = AA=IA= A## and ##B^2 = BB=IB= B##.
Therefore, ##A^2 + B^2 = A + B## which means (a) is a correct answer.
Also we can say that ##A^2 + B^2 = I^2 + I^2 = II + II = AB + AB = 2AB##,
and that ##A^2 + B^2 = I^2 + I^2 = II + II = BA + BA = 2BA##. From these conclusions, it also follows that (b) and (c) are correct answers.
Thus, according to me (a),(b) and (c) are correct answers. But the correct answer is given as (a) only.