- #1
ineedhelpnow
- 651
- 0
Did i do this right?
$2^n>n^2$, $n \ge 5$
$S_{k+1}: 2^{k+1}>k^2+2k+1$
$2^k>k^2$
$2(2^k)>2k^2$
$2^{k+1}>k^2+k^2$
And $k^2+k^2>k^2+2k+1$
RHS: $k^2+2k+1$
So $2^{k+1}>(k+1)^2$
$2^n>n^2$, $n \ge 5$
$S_{k+1}: 2^{k+1}>k^2+2k+1$
$2^k>k^2$
$2(2^k)>2k^2$
$2^{k+1}>k^2+k^2$
And $k^2+k^2>k^2+2k+1$
RHS: $k^2+2k+1$
So $2^{k+1}>(k+1)^2$