- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the set $M=\{1,2,3,4\}$. I want to check if the following are $\sigma$-algebras over $M$.
$\mathcal{A}$ is a $\sigma$-algebra over $M$ if the following hold:
We have the set $M=\{1,2,3,4\}$. I want to check if the following are $\sigma$-algebras over $M$.
- $\mathcal{A}=\{\emptyset, \{1,2\}, \{3,4\}\}$
- $\mathcal{A}=\{\emptyset, M, \{1\}, \{2,3,4\}, \{1,2\}, \{3,4\}\}$
- $\mathcal{A}=\{\emptyset, M, \{3\}, \{1,2,4\}\}$
- $\mathcal{A}=\{\emptyset, M, \{1\}, \{2\}, \{1,2\}, \{3,4\}, \{2,3,4\}, \{1,2,4\}, \{1,3,4\}\}$
$\mathcal{A}$ is a $\sigma$-algebra over $M$ if the following hold:
- $M$ is in $\mathcal{A}$.
- If $A$ is in $\mathcal{A}$, then so is the complement of $A$.
- If $A_n$ is a sequence of elements of $\mathcal{A}$, then the union of the $A_n$s is in $\mathcal{A}$.
- $\mathcal{A}=\{\emptyset, \{1,2\}, \{3,4\}\}$
- $M \notin \mathcal{A}$.
Therefore, $\mathcal{A}$ is not a $\sigma$-algebra over $M$. - $\mathcal{A}=\{\emptyset, M, \{1\}, \{2,3,4\}, \{1,2\}, \{3,4\}\}$
- $M \in \mathcal{A}$.
- $\emptyset \in \mathcal{A} \rightarrow \emptyset^c=M\in \mathcal{A}$
$M \in \mathcal{A} \rightarrow M^c=\emptyset\in \mathcal{A}$
$\{1\}\in \mathcal{A} \rightarrow \{1\}^c=\{2,3,4\}\in \mathcal{A}$
$\{2,3,4\} \in \mathcal{A} \rightarrow \{2,3,4\}^c=\{1\}\in \mathcal{A}$
$\{1,2\} \in \mathcal{A} \rightarrow \{1,2\}^c=\{3,4\}\in \mathcal{A}$
$\{3,4\} \in \mathcal{A} \rightarrow \{3,4\}^c=\{1,2\}\in \mathcal{A}$
- Do we have to check if the union of all the elements of $\mathcal{A}$ is again in $\mathcal{A}$ ?
- $\mathcal{A}=\{\emptyset, M, \{3\}, \{1,2,4\}\}$
- $M\in \mathcal{A}$.
- $\emptyset \in \mathcal{A} \rightarrow \emptyset^c=M\in \mathcal{A}$
$M \in \mathcal{A} \rightarrow M^c=\emptyset\in \mathcal{A}$
$\{3\} \in \mathcal{A} \rightarrow \{3\}^c=\{1,2,4\}\in \mathcal{A}$
$\{1,2,4\} \in \mathcal{A} \rightarrow \{1,2,4\}^c=\{3\}\in \mathcal{A}$
- Do we have to check if the union of all the elements of $\mathcal{A}$ is again in $\mathcal{A}$ ?
- $\mathcal{A}=\{\emptyset, M, \{1\}, \{2\}, \{1,2\}, \{3,4\}, \{2,3,4\}, \{1,2,4\}, \{1,3,4\}\}$
- $M \in \mathcal{A}$.
- $\emptyset \in \mathcal{A} \rightarrow \emptyset^c=M\in \mathcal{A}$
$M \in \mathcal{A} \rightarrow M^c=\emptyset\in \mathcal{A}$
$\{1\}\in \mathcal{A} \rightarrow \{1\}^c=\{2,3,4\}\in \mathcal{A}$
$\{2\} \in \mathcal{A} \rightarrow \{2\}^c=\{1,3,4\}\in \mathcal{A}$
$\{1,2\} \in \mathcal{A} \rightarrow \{1,2\}^c=\{3,4\}\in \mathcal{A}$
$\{3,4\}\in \mathcal{A} \rightarrow \{3,4\}^c=\{1,2\}\in \mathcal{A}$
$\{2,3,4\} \in \mathcal{A} \rightarrow \{2,3,4\}^c=\{1\}\in \mathcal{A}$
$\{1,2,4\} \in \mathcal{A} \rightarrow \{1,2,4\}^c=\{3\}\notin \mathcal{A}$
So, $\mathcal{A}$ is not a $\sigma$-algebra.