- #1
Andrei1
- 36
- 0
Suppose \(\displaystyle A\) is a set with at least two elements and \(\displaystyle A\times A\sim A.\) Then \(\displaystyle \mathcal{P}(A)\times\mathcal{P}(A)\sim\mathcal{P}(A).\)
My attempt: I know that \(\displaystyle \mathcal{P}((A\times A)\cup A)\sim\mathcal{P}(A\times A)\times\mathcal{P}(A)\sim\mathcal{P}(A) \times \mathcal{P}(A).\) How to prove that \(\displaystyle \mathcal{P}(A)\sim \mathcal{P}((A\times A)\cup A)\)? More generally, is it true that if \(\displaystyle X\) and \(\displaystyle Y\) are infinite and \(\displaystyle X\sim Y\), then \(\displaystyle X\cup Y\sim Y\)?
My attempt: I know that \(\displaystyle \mathcal{P}((A\times A)\cup A)\sim\mathcal{P}(A\times A)\times\mathcal{P}(A)\sim\mathcal{P}(A) \times \mathcal{P}(A).\) How to prove that \(\displaystyle \mathcal{P}(A)\sim \mathcal{P}((A\times A)\cup A)\)? More generally, is it true that if \(\displaystyle X\) and \(\displaystyle Y\) are infinite and \(\displaystyle X\sim Y\), then \(\displaystyle X\cup Y\sim Y\)?