- #1
ineedhelpnow
- 651
- 0
$S_k>k^2$
$S_{k+1}:2^{k+1}>(k+1)^2$
$2*2^{k+1}>2(k+1)^2$
$2^{k+2}>2(k+1)^2$
Assume $x=k+1$
$\frac{2^{x+1}}{2}>x^2$
$2^{x+1}*2^{-1}>x^2$
$2^x>x^2$
right?
$2^{k+1}>(k+1)^2$
$S_{k+1}:2^{k+1}>(k+1)^2$
$2*2^{k+1}>2(k+1)^2$
$2^{k+2}>2(k+1)^2$
Assume $x=k+1$
$\frac{2^{x+1}}{2}>x^2$
$2^{x+1}*2^{-1}>x^2$
$2^x>x^2$
right?
$2^{k+1}>(k+1)^2$