- #1
ra_forever8
- 129
- 0
Consider the integral
\begin{equation}
I(x)= \frac{1}{\pi} \int^{\pi}_{0} sin(xsint) dt
\end{equation}
show that
\begin{equation}
I(x)= \frac{2x}{\pi} +O(x^{3})
\end{equation}
as $x\rightarrow0$.
=> I Have used the expansion of McLaurin series of $I(x)$ but did not work.
please help me.
\begin{equation}
I(x)= \frac{1}{\pi} \int^{\pi}_{0} sin(xsint) dt
\end{equation}
show that
\begin{equation}
I(x)= \frac{2x}{\pi} +O(x^{3})
\end{equation}
as $x\rightarrow0$.
=> I Have used the expansion of McLaurin series of $I(x)$ but did not work.
please help me.
Last edited: