- #1
Tentothe
- 13
- 0
I really just want to know if I'm doing this correctly, as I don't have access to the answer to check.
A cylindrical shell of radius 7.00 cm and length 240 cm has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 19.0 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. Find (a) the net charge on the shell and (b) the electric field at a point 4.00 cm from the axis, measured radially outward from the midpoint of the shell.
[tex]\phi=4\pi kQ[/tex]
(a) Because 19.0 cm is relatively close to the shell given its length of 240 cm, I chose a cylinder with radius of 0.19 m as my Gaussian surface. The electric field vector is parallel to the normal vector of the cylindrical surface at all points, so
[tex]\phi=EA=E2\pi (r-0.07 m)h=4\pi kQ \frac{h}{2.4 m}[/tex]
[tex]Q=\frac{(2.4 m)E(r-0.07 m)}{2k}=\frac{(2.4 m)(3.60 * 10^{4} N/C)(0.12 m)}{2(9 * 10^{9} Nm^{2}/C^{2})}=5.76 * 10^{-7} C[/tex]
(b) A point 4.00 cm from the axis is within the shell itself since it has a radius of 7.00 cm. If I were to choose a cylinder of radius 0.04 m for a Gaussian surface, would the electric field not be zero since it would contain no charge within?
I'm really not sure if I'm modeling this correctly at all. Any help is appreciated.
Homework Statement
A cylindrical shell of radius 7.00 cm and length 240 cm has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 19.0 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. Find (a) the net charge on the shell and (b) the electric field at a point 4.00 cm from the axis, measured radially outward from the midpoint of the shell.
Homework Equations
[tex]\phi=4\pi kQ[/tex]
The Attempt at a Solution
(a) Because 19.0 cm is relatively close to the shell given its length of 240 cm, I chose a cylinder with radius of 0.19 m as my Gaussian surface. The electric field vector is parallel to the normal vector of the cylindrical surface at all points, so
[tex]\phi=EA=E2\pi (r-0.07 m)h=4\pi kQ \frac{h}{2.4 m}[/tex]
[tex]Q=\frac{(2.4 m)E(r-0.07 m)}{2k}=\frac{(2.4 m)(3.60 * 10^{4} N/C)(0.12 m)}{2(9 * 10^{9} Nm^{2}/C^{2})}=5.76 * 10^{-7} C[/tex]
(b) A point 4.00 cm from the axis is within the shell itself since it has a radius of 7.00 cm. If I were to choose a cylinder of radius 0.04 m for a Gaussian surface, would the electric field not be zero since it would contain no charge within?
I'm really not sure if I'm modeling this correctly at all. Any help is appreciated.
Last edited: