- #1
SothSogi
- 20
- 4
Hi there. I am trying to derive Gauss's law from the divergence. I would like to know if it is correct:
The divergence is defined as (I saw this on Fuller & Byron "Mathematics of classical and quantum physics")
##
\nabla\cdot\textbf{E}=\lim_{\Delta\tau\rightarrow0}\frac{1}{\Delta\tau}\int_\sigma\textbf{E}\cdot d\boldsymbol\sigma
##
Then I made the following
##
\nabla\cdot\textbf{E}=\lim_{\Delta\tau\rightarrow0}\frac{1}{\Delta\tau}\int_\sigma\textbf{E}\cdot d\boldsymbol\sigma=\frac{1}{d\tau}\int_\sigma\textbf{E}\cdot d\boldsymbol\sigma
##
So then, for a point charge and taking the dot product for a spherical surface element
##
\nabla\cdot\textbf{E}=\frac{1}{d\tau}\int_\sigma\frac{q}{4\pi\varepsilon_0\vert\textbf{r}\vert^2}d\sigma=\frac{1}{d\tau}\frac{q}{4\pi\varepsilon_0\vert\textbf{r}\vert^2}\int_\sigma d\sigma
##
##
\nabla\cdot\textbf{E}=\frac{1}{d\tau}\frac{q}{4\pi\varepsilon_0\vert\textbf{r}\vert^2}\left(4\pi r^2\right)=\frac{1}{d\tau}\frac{q}{\varepsilon_0}
##
Now ##
q=\int_V\rho d\tau
##
So
##
\nabla\cdot\textbf{E}=\frac{1}{d\tau}\frac{1}{\varepsilon_0}\int_V\rho d\tau=\frac{1}{\varepsilon_0}\int_V\rho\frac{d\tau}{d\tau}
##
So
##
\nabla\cdot\textbf{E}=\frac{1}{\varepsilon_0}\rho
##Thanks for taking the time to read it.
The divergence is defined as (I saw this on Fuller & Byron "Mathematics of classical and quantum physics")
##
\nabla\cdot\textbf{E}=\lim_{\Delta\tau\rightarrow0}\frac{1}{\Delta\tau}\int_\sigma\textbf{E}\cdot d\boldsymbol\sigma
##
Then I made the following
##
\nabla\cdot\textbf{E}=\lim_{\Delta\tau\rightarrow0}\frac{1}{\Delta\tau}\int_\sigma\textbf{E}\cdot d\boldsymbol\sigma=\frac{1}{d\tau}\int_\sigma\textbf{E}\cdot d\boldsymbol\sigma
##
So then, for a point charge and taking the dot product for a spherical surface element
##
\nabla\cdot\textbf{E}=\frac{1}{d\tau}\int_\sigma\frac{q}{4\pi\varepsilon_0\vert\textbf{r}\vert^2}d\sigma=\frac{1}{d\tau}\frac{q}{4\pi\varepsilon_0\vert\textbf{r}\vert^2}\int_\sigma d\sigma
##
##
\nabla\cdot\textbf{E}=\frac{1}{d\tau}\frac{q}{4\pi\varepsilon_0\vert\textbf{r}\vert^2}\left(4\pi r^2\right)=\frac{1}{d\tau}\frac{q}{\varepsilon_0}
##
Now ##
q=\int_V\rho d\tau
##
So
##
\nabla\cdot\textbf{E}=\frac{1}{d\tau}\frac{1}{\varepsilon_0}\int_V\rho d\tau=\frac{1}{\varepsilon_0}\int_V\rho\frac{d\tau}{d\tau}
##
So
##
\nabla\cdot\textbf{E}=\frac{1}{\varepsilon_0}\rho
##Thanks for taking the time to read it.