- #1
norman86
- 5
- 0
Hi all! I want to perturbatively solve this equation in [tex]\beta[/tex] at second order in [tex]\alpha[/tex]
[tex]\frac{\beta^{2}}{4}-\frac{3}{8}\beta^{4}\alpha+\frac{2}{3}\beta^{6}\alpha^{2}=\frac{1}{4}[/tex]
I rewrite this formula in this way
[tex]\beta^{2}=1+\frac{3}{2}\beta^{4}\alpha-\frac{8}{3}\beta^{6}\alpha^{2}[/tex]
When I try to solve it perturbatively, I obtain
[tex]\beta^{2}=1+\frac{3}{2}1^{2}\alpha-\frac{8}{3}\alpha^{2}\left(1+\frac{3}{2}1^{2}\alpha\right)^{3}[/tex]
The result is
[tex]\beta^{2}=1+\frac{3}{2}\alpha-\frac{8}{3}\alpha^{2}[/tex]
The square root of which gives
[tex]\beta=1+\frac{3}{4}\alpha-\frac{155}{96}\alpha^{2}[/tex]
I know that the correct result is
[tex]\beta=1+\frac{3}{4}\alpha+\frac{61}{96}\alpha^{2}[/tex]
Clearly, there is something wrong in the second order of my calculus.
Can anyone please tell me where I'm mistaking? Thanks a lot.
[tex]\frac{\beta^{2}}{4}-\frac{3}{8}\beta^{4}\alpha+\frac{2}{3}\beta^{6}\alpha^{2}=\frac{1}{4}[/tex]
I rewrite this formula in this way
[tex]\beta^{2}=1+\frac{3}{2}\beta^{4}\alpha-\frac{8}{3}\beta^{6}\alpha^{2}[/tex]
When I try to solve it perturbatively, I obtain
[tex]\beta^{2}=1+\frac{3}{2}1^{2}\alpha-\frac{8}{3}\alpha^{2}\left(1+\frac{3}{2}1^{2}\alpha\right)^{3}[/tex]
The result is
[tex]\beta^{2}=1+\frac{3}{2}\alpha-\frac{8}{3}\alpha^{2}[/tex]
The square root of which gives
[tex]\beta=1+\frac{3}{4}\alpha-\frac{155}{96}\alpha^{2}[/tex]
I know that the correct result is
[tex]\beta=1+\frac{3}{4}\alpha+\frac{61}{96}\alpha^{2}[/tex]
Clearly, there is something wrong in the second order of my calculus.
Can anyone please tell me where I'm mistaking? Thanks a lot.