- #1
facenian
- 436
- 25
Homework Statement
Let [tex]\psi(x,y,z)=\psi(\vec{r})[/tex] be the normalized wave function of a particle.Express in terms of [itex]\psi(\vec{r})[/itex] the probability for a simultaneous measurements o X y P_z to yield :
[tex]x_1 \leq x \leq x_2[/tex]
[tex] p_z \geq 0[/tex]
Homework Equations
[tex]<\vec{p}|\vec{r}>=\frac{1}{(2\pi\hbar)^{3/2}}e^{-i\vec{p}.\vec{r}/\hbar} [/tex]
[tex]<\vec{p}|\psi>=\frac{1}{(2\pi\hbar)^{3/2}}\int \psi(\vec{r}) e^{-i\vec{p}.\vec{r}/\hbar} dr^3[/tex]
The Attempt at a Solution
I have reached the following result:
[tex]\int_{-\infty}^{\infty}dz\int_{-\infty}^{\infty}dy\int_{x_1}^{x_2}dx \int_{-\infty}^{\infty}dp_x\int_{-\infty}^{\infty}dp_y\int_0^{\infty}dp_z <\vec{p}|\vec{r}>\psi(\vec{r})<\psi|\vec{p}> [/tex]
I need to know two things: 1) is my result correct? 2) in case it is correct, is there any other more simple or concrete answer?
Last edited: