- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Smirk)
I am given this exercise:
$$\text{Let } \phi: \mathbb{Z} \to m \mathbb{Z}, \text{ that is defined like that: } \phi(a)=ma$$
a) $\phi(a)=ma \text{ is a group homomorphism }$
b) $\phi(a)=ma \text{ is a ring homomorphism }$
c) $\text{the group } \mathbb{Z}_2 \times \mathbb{Z}_4 \text{ is cyclic}$
d)$\text{the group } \mathbb{Z}_4 \times \mathbb{Z}_3 \text{ is cyclic}$
e)$\text{ the groups } D_4 \text{ and } \mathbb{Z}_8 \text{ are isomorphic}$
f) $\text{ the groups } \mathbb{Z}_4 \text{ and } U_4 \text{ are isomorphic}$
For each sentence $p \in \{a,b,c,d,e,f \}$,let $t(p)=1$ if $p$ is true, $t(p)=-1$ if $p$ is false.
Calculate $5t(a)+13t(b)-17t(c)+5t(d)+7t(e)+9t(f)$
I thought that it is equal to : $5-13+17+5-7+9=20+9-13=29-13=16$
(a->true,b->false,c->false,d->true,e->false,f->true)
Could you tell me if it is right? (Sweating)(Sweating)
I am given this exercise:
$$\text{Let } \phi: \mathbb{Z} \to m \mathbb{Z}, \text{ that is defined like that: } \phi(a)=ma$$
a) $\phi(a)=ma \text{ is a group homomorphism }$
b) $\phi(a)=ma \text{ is a ring homomorphism }$
c) $\text{the group } \mathbb{Z}_2 \times \mathbb{Z}_4 \text{ is cyclic}$
d)$\text{the group } \mathbb{Z}_4 \times \mathbb{Z}_3 \text{ is cyclic}$
e)$\text{ the groups } D_4 \text{ and } \mathbb{Z}_8 \text{ are isomorphic}$
f) $\text{ the groups } \mathbb{Z}_4 \text{ and } U_4 \text{ are isomorphic}$
For each sentence $p \in \{a,b,c,d,e,f \}$,let $t(p)=1$ if $p$ is true, $t(p)=-1$ if $p$ is false.
Calculate $5t(a)+13t(b)-17t(c)+5t(d)+7t(e)+9t(f)$
I thought that it is equal to : $5-13+17+5-7+9=20+9-13=29-13=16$
(a->true,b->false,c->false,d->true,e->false,f->true)
Could you tell me if it is right? (Sweating)(Sweating)