- #1
paulmdrdo1
- 385
- 0
again, i need some help here guys.$\displaystyle\int\frac{3x-1}{2x^2+2x+3}dx$
=$\displaystyle\int\frac{3x-1}{2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]}dx$
$\displaystyle a=\frac{\sqrt{5}}{2}$; $\displaystyle u=x+\frac{1}{2}$; $\displaystyle du=dx$; $\displaystyle x=u-\frac{1}{2}$
=$\displaystyle\frac{1}{2}\int3\frac{\left(u-\frac{1}{2}\right)}{a^2+u^2}du$;
=$\displaystyle\frac{1}{2}\int\frac{\left(3u-\frac{3}{2}\right)}{a^2+u^2}du$
=$\displaystyle\frac{1}{2}\left(\int\frac{3u}{a^2+u^2}du-\frac{3}{2}\int\frac{du}{a^2+u^2}du\right)$
$\displaystyle v=a^2+u^2$; $\displaystyle dv=2udu$; $\displaystyle du=\frac{1}{2u}dv$
=$\displaystyle\frac{1}{2}\left(3\int\frac{udv}{v\,2u}dv-\frac{3}{2}\int\frac{du}{a^2+u^2}du\right)$
=$\displaystyle\frac{1}{2}\left(\frac{3}{2}\int \frac{dv}{v}-\frac{3}{2}\int\frac{du}{a^2+u^2}du\right)$
=$\displaystyle\frac{1}{2}\left(\frac{3}{2}ln(a^2+u^2)-\frac{3}{2}\frac{2}{\sqrt{5}}\arctan\frac{2x+1}{ \sqrt{5}}\right)$
=$\displaystyle\frac{3}{4}ln\left(x+\frac{\sqrt{5}+1}{2}\right)-\frac{3}{2\sqrt{5}}\arctan\frac{2x+1}{ \sqrt{5}}+C$ ---> FINAL ANSWER.
would you be so generous to check if my solution is correct?
thanks!
the answer in my book is in this form,
$\displaystyle\frac{3}{4}ln(2x^2+2x+3)-\frac{\sqrt{5}}{2}\arctan\frac{2x+1}{\sqrt{5}}+C$
is my answer equivalent to this one?
=$\displaystyle\int\frac{3x-1}{2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]}dx$
$\displaystyle a=\frac{\sqrt{5}}{2}$; $\displaystyle u=x+\frac{1}{2}$; $\displaystyle du=dx$; $\displaystyle x=u-\frac{1}{2}$
=$\displaystyle\frac{1}{2}\int3\frac{\left(u-\frac{1}{2}\right)}{a^2+u^2}du$;
=$\displaystyle\frac{1}{2}\int\frac{\left(3u-\frac{3}{2}\right)}{a^2+u^2}du$
=$\displaystyle\frac{1}{2}\left(\int\frac{3u}{a^2+u^2}du-\frac{3}{2}\int\frac{du}{a^2+u^2}du\right)$
$\displaystyle v=a^2+u^2$; $\displaystyle dv=2udu$; $\displaystyle du=\frac{1}{2u}dv$
=$\displaystyle\frac{1}{2}\left(3\int\frac{udv}{v\,2u}dv-\frac{3}{2}\int\frac{du}{a^2+u^2}du\right)$
=$\displaystyle\frac{1}{2}\left(\frac{3}{2}\int \frac{dv}{v}-\frac{3}{2}\int\frac{du}{a^2+u^2}du\right)$
=$\displaystyle\frac{1}{2}\left(\frac{3}{2}ln(a^2+u^2)-\frac{3}{2}\frac{2}{\sqrt{5}}\arctan\frac{2x+1}{ \sqrt{5}}\right)$
=$\displaystyle\frac{3}{4}ln\left(x+\frac{\sqrt{5}+1}{2}\right)-\frac{3}{2\sqrt{5}}\arctan\frac{2x+1}{ \sqrt{5}}+C$ ---> FINAL ANSWER.
would you be so generous to check if my solution is correct?
thanks!
the answer in my book is in this form,
$\displaystyle\frac{3}{4}ln(2x^2+2x+3)-\frac{\sqrt{5}}{2}\arctan\frac{2x+1}{\sqrt{5}}+C$
is my answer equivalent to this one?