- #1
natski
- 267
- 2
As stated in my subject line, I know that P(A|B) = P(A) and P(B|A) = P(B), i.e. A and B are separable as P(A,B) = P(A) P(B). I strongly suspect that this holds with a conditional added, but I can't find a way to formally prove it... can anyone prove this in a couple of lines via Bayes' rules? This is not a homework question, but part of my research and I can't find the answer anywhere.
Thanks to anyone who can help in advanced!
natski
Thanks to anyone who can help in advanced!
natski