- #1
Dustinsfl
- 2,281
- 5
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$
Is this true?
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$
Is this true?