- #1
noblegas
- 268
- 0
Homework Statement
Show that if the operator Q satifies
[tex](\phi,Q\phi)=(Q\phi,\phi)[/tex] for all [tex]\phi[/tex], then Q is self-adjoint , that is
[tex](\varphi,QX)=(Q\varphi,X).[/tex] Consider the functions
[tex]\phi_1=\varphi+X[/tex],[tex] \phi_2=\phi+i*X[/tex]
Note: X is NOT a matrix. Could not find the latex code for the curvy X so i just typed X
Homework Equations
The Attempt at a Solution
[tex](\phi,Q\phi)=(Q\phi,\phi)[/tex] =[tex](\phi_1,Q\phi_1)=(Q\phi_1,\phi_1)=(\varphi+X),Q(\varphi+X), [/tex] (Q\phi,\phi)=[tex](\phi_2,Q\phi_2)=(Q\phi_1,\phi)=(\varphi+X)i,Q(\varphi+X)i[/tex] ? Am I off in the right direction?