- #1
BHL 20
- 66
- 7
If you take an ordered field of numbers with the operations of addition and multiplication, endowed with the completeness axiom, represent in as an infinite series of points constituting a line, then put three such lines orthogonal to each other, it does not seem obvious to me that this is the exact three-dimensional space satisfying Euclid's five axioms. Is there a formal proof of the equivalence of these two spaces, and if there is where can I find it ?