- #1
Master1022
- 611
- 117
- Homework Statement
- Let us imagine that we have two vectors ## \vec{a} ## and ## \vec{b} ## and they point in similar directions, such that the inner-product is evaluated to be a +ve number. If we now multiply both of the vectors by a matrix ## W ## which has real entries, will the inner product of the 'transformed' vectors also be positive?
- Relevant Equations
- Inner product
Hi,
I was thinking about the following problem, but I couldn't think of any conclusive reasons to support my idea.
Question:
Let us imagine that we have two vectors ## \vec{a} ## and ## \vec{b} ## and they point in similar directions, such that the inner-product is evaluated to be a +ve number. If we now multiply both of the vectors by a matrix ## W ## which has real entries, will the inner product of the 'transformed' vectors also be positive?
Attempt:
Intuitively I think along the lines of: if we imagine the operation as transforming a vector in some way, then the two vectors ## \vec{a}## and ## \vec{b}##, which were similar, should be transformed to similar vectors?
Mathematically, I can write the following:
[tex] <W \vec{a} , W \vec{b} > = (W \vec{a}) \cdot (W \vec{b}) = (W \vec{a})^{T} (W \vec{b}) = \vec{a}^{T} W^{T} W \vec{b} [/tex]
- ## W^{T} W ## is positive semi-definite.
- I suppose if ## \vec{a} ## and ## \vec{b} ##, then if/how positive the outcome will depend on some type of sensitivity of ## W ##? That is, we could view ## \vec{b} = \vec{a} + \vec{\epsilon} ## and think about that?
Any help is greatly appreciated.
I was thinking about the following problem, but I couldn't think of any conclusive reasons to support my idea.
Question:
Let us imagine that we have two vectors ## \vec{a} ## and ## \vec{b} ## and they point in similar directions, such that the inner-product is evaluated to be a +ve number. If we now multiply both of the vectors by a matrix ## W ## which has real entries, will the inner product of the 'transformed' vectors also be positive?
Attempt:
Intuitively I think along the lines of: if we imagine the operation as transforming a vector in some way, then the two vectors ## \vec{a}## and ## \vec{b}##, which were similar, should be transformed to similar vectors?
Mathematically, I can write the following:
[tex] <W \vec{a} , W \vec{b} > = (W \vec{a}) \cdot (W \vec{b}) = (W \vec{a})^{T} (W \vec{b}) = \vec{a}^{T} W^{T} W \vec{b} [/tex]
- ## W^{T} W ## is positive semi-definite.
- I suppose if ## \vec{a} ## and ## \vec{b} ##, then if/how positive the outcome will depend on some type of sensitivity of ## W ##? That is, we could view ## \vec{b} = \vec{a} + \vec{\epsilon} ## and think about that?
Any help is greatly appreciated.