- #1
kingwinner
- 1,270
- 0
Use separation of variables/Fourier method to solve
ut - 4uxx = 0, -pi<x<pi, t>0
u(-pi,t) = -u(pi,t), ux(-pi,t) = -ux(pi,t), t>0.
=============================
What I got is that (n+1/2)2 are eigenvalues (n=0,1,2,3,...) and cos[(n+1/2)x)] is an eigenfunction.
Instead of two sets of eigenvalues, there is only one set. I cannot find another set of eigenvalues.
My question is: is sin[(n+1/2)x)] also an eigenfunction for this problem? Why or why not?
Thanks for any help!
ut - 4uxx = 0, -pi<x<pi, t>0
u(-pi,t) = -u(pi,t), ux(-pi,t) = -ux(pi,t), t>0.
=============================
What I got is that (n+1/2)2 are eigenvalues (n=0,1,2,3,...) and cos[(n+1/2)x)] is an eigenfunction.
Instead of two sets of eigenvalues, there is only one set. I cannot find another set of eigenvalues.
My question is: is sin[(n+1/2)x)] also an eigenfunction for this problem? Why or why not?
Thanks for any help!