- #1
Klion
- 14
- 0
Alright, heading says it all. This is a nice problem heh.. I can see how to prove sqrt(5) is irrational. I think this method works up to the points where the fact 5 is a prime is used, (ie prime lemma) on 5 which doesn't work so well on 6! hehe
Was thinking of maybe using product of primes somehow but.. hmm dunno
Anyway for sqrt(5) went like this (proof by contradiction)
Prove sqrt(5) is not rational.
Suppose sqrt(5) = a/b, where a,b E Z+ (suppose sqrt(5) is rational)
we'll also assume gcd(a,b) = 1 (otherwise just divide a,b by gcd)
sqrt(5) = a/b <=> 5 = a^2/b^2 or 5*b^2=a^2
so 5|a^2, but 5 is a prime so 5|a Ea' 5*a'=a so 5b^2=(5a)^2 or 5b^2=5^2*a^2 or b^2 = 5*a'^2 so 5|b^2 by prime lemma 5|b 5|a ^ b|b so 5|gcd(a,b)
so 5|1 which is nonsense therefore our initial assumption is incorrect and 5 is in fact irrational.
-Kli
Was thinking of maybe using product of primes somehow but.. hmm dunno
Anyway for sqrt(5) went like this (proof by contradiction)
Prove sqrt(5) is not rational.
Suppose sqrt(5) = a/b, where a,b E Z+ (suppose sqrt(5) is rational)
we'll also assume gcd(a,b) = 1 (otherwise just divide a,b by gcd)
sqrt(5) = a/b <=> 5 = a^2/b^2 or 5*b^2=a^2
so 5|a^2, but 5 is a prime so 5|a Ea' 5*a'=a so 5b^2=(5a)^2 or 5b^2=5^2*a^2 or b^2 = 5*a'^2 so 5|b^2 by prime lemma 5|b 5|a ^ b|b so 5|gcd(a,b)
so 5|1 which is nonsense therefore our initial assumption is incorrect and 5 is in fact irrational.
-Kli