- #1
kelly0303
- 580
- 33
Hello! I am really not an expert in this so please correct me if I say something stupid. I read a few articles (e.g. https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.90.025008) in which there are presented the implications of low energy physics on high energy physics. In the electric dipole moment (EDM) of fundamental particles section it is said that the limits on the electron EDM (eEDM) implies that possible SUSY particles should have a mass greater than 10 TeV. Also an improvement in the eEDM measurements sensitivity by 1 or 2 order of magnitudes (which is not an easy task experimentally by any means), with a null result, would rule out SUSY (almost) completely, in the sense that the masses of the particles needed to explain the value of the EDM would be too large for SUSY to be able to solve the problems it was originally created for (e.g. Higgs mass, baryon asymmetry). So, assuming I didn't missunderstand what I read, I have a few questions. I hear over and over again that CERN is still trying, as one of its main objectives to search for SUSY. Yet if the masses of the particles are bigger than 10 TeV they wouldn't be able to find it at the current energies, and the HL-LHC, will just give more statistics, but not more energy to produce these particles. So, what do they mean when they say they are searching for SUSY particles? Are there some loopholes that allow such a small EDM and yet small mass SUSY particles at the same time? And a second question, assuming the EDM will not be found after the sensitivity improvement, hence most of the SUSY models ruled out, what are the most viable models available at our energy level that the physics community is most likely to start to look for? Thank you!