- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to show that $\text{Aut}(\mathbb{Z}_p)$ is isomorphic to $\mathbb{Z}_{p-1}$.
The group $\mathbb{Z}_p$ is cylcic and is generated by one element. The possible generators are $\{1,2,\dots , p-1\}$.
Each automorphism maps each of the elements of the set $\{1,2,\dots , p-1\}$ to one of the elements $\{1,2,\dots , p-1\}$. So, we have the function $f_m(x)=mx\pmod p, \ 1\leq m\leq p-1$, right?
To show that $\text{Aut}(\mathbb{Z}_p)$ is isomorphic to $\mathbb{Z}_{p-1}$ do we define the function $$h:\text{Aut}(\mathbb{Z}_p)\rightarrow \mathbb{Z}_{p-1} \text{ with } \\ f_m\mapsto (m-1)\pmod {p-1} , \ 1\leq m\leq p-1$$ ? (Wondering)
I want to show that $\text{Aut}(\mathbb{Z}_p)$ is isomorphic to $\mathbb{Z}_{p-1}$.
The group $\mathbb{Z}_p$ is cylcic and is generated by one element. The possible generators are $\{1,2,\dots , p-1\}$.
Each automorphism maps each of the elements of the set $\{1,2,\dots , p-1\}$ to one of the elements $\{1,2,\dots , p-1\}$. So, we have the function $f_m(x)=mx\pmod p, \ 1\leq m\leq p-1$, right?
To show that $\text{Aut}(\mathbb{Z}_p)$ is isomorphic to $\mathbb{Z}_{p-1}$ do we define the function $$h:\text{Aut}(\mathbb{Z}_p)\rightarrow \mathbb{Z}_{p-1} \text{ with } \\ f_m\mapsto (m-1)\pmod {p-1} , \ 1\leq m\leq p-1$$ ? (Wondering)