- #1
e(ho0n3
- 1,357
- 0
Homework Statement
If G is a group of order 231, prove that the 11-Sylow subgroup is in the center of G.
The attempt at a solution
The number of 11-Sylow subgroups is 1 + 11k and this number must be either 1, 3, 7, 21, 33, 77 or 231. Upon inspection, the only possibility is 1.
Let H be the 11-Sylow subgroup of G. Note that 3 * 7 * 11 = 231, so o(H) = 11 and H is cyclic. Furthermore, this is the only subgroup of order 11, so it must be normal. With these facts in mind, let a be a nonidentity element of H. For any g in G, we must have g-1ag = aj for some j in {1, 2, ..., 11}. Thus ag = gaj.
I don't know what to do next. Any tips?
If G is a group of order 231, prove that the 11-Sylow subgroup is in the center of G.
The attempt at a solution
The number of 11-Sylow subgroups is 1 + 11k and this number must be either 1, 3, 7, 21, 33, 77 or 231. Upon inspection, the only possibility is 1.
Let H be the 11-Sylow subgroup of G. Note that 3 * 7 * 11 = 231, so o(H) = 11 and H is cyclic. Furthermore, this is the only subgroup of order 11, so it must be normal. With these facts in mind, let a be a nonidentity element of H. For any g in G, we must have g-1ag = aj for some j in {1, 2, ..., 11}. Thus ag = gaj.
I don't know what to do next. Any tips?