- #1
alexmahone
- 304
- 0
Prove: if $\sum a_n$ is absolutely convergent and $\{b_n\}$ is bounded, then $\sum a_nb_n$ is convergent.
My working:
$|b_n|\le B$ for some $B\ge 0$.
$|a_n||b_n|<B|a_n|$
Since $\sum|a_n|$ converges, $\sum|a_n||b_n|=\sum|a_nb_n|$ converges.
So, $\sum a_nb_n$ converges. (Absolute convergence theorem)
Is that okay?
My working:
$|b_n|\le B$ for some $B\ge 0$.
$|a_n||b_n|<B|a_n|$
Since $\sum|a_n|$ converges, $\sum|a_n||b_n|=\sum|a_nb_n|$ converges.
So, $\sum a_nb_n$ converges. (Absolute convergence theorem)
Is that okay?
Last edited: