- #1
Kashmir
- 468
- 74
I'm trying to find the adjoint of position operator.
I've done this:
The eigenvalue equation of position operator is
##\hat{x}|x\rangle=x|x\rangle##
The adjoint of position operator acts as
##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##
Then using above equation we've
##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##
or
##\langle x|( x^{\dagger}
|x\rangle)=\langle x|(x| x\rangle)##
Then
##x^{\dagger}|x\rangle=x|x\rangle##
Hence
##x^{\dagger}=x##
Is this correct?
I've done this:
The eigenvalue equation of position operator is
##\hat{x}|x\rangle=x|x\rangle##
The adjoint of position operator acts as
##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##
Then using above equation we've
##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##
or
##\langle x|( x^{\dagger}
|x\rangle)=\langle x|(x| x\rangle)##
Then
##x^{\dagger}|x\rangle=x|x\rangle##
Hence
##x^{\dagger}=x##
Is this correct?