- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have a matrix $A\in \mathbb{R}^{m\times n}$ which has the rank $n$. The condition number is defined as $\displaystyle{k(A)=\frac{\max_{\|x\|=1}\|Ax\|}{\min_{\|x\|=1}\|Ax\|}}$.
I want to show that $k_2(A^TA)=\left (k_2(A)\right )^2$. We have that $$k_2(A^TA)=\frac{\max_{\|x\|_2=1}\|(A^TA)x\|_2}{\min_{\|x\|_2=1}\|(A^TA)x\|_2}$$
It holds that $$\|(A^TA)x\|_2=\left ((A^TA)x, (A^TA)x\right )=\left (A^TAx\right )^T\left (A^TAx\right )=x^TA^TAA^TAx=\left (Ax\right )^T\left (AA^T\right )\left (Ax\right )$$
We also have that $$\|Ax\|_2=\left (Ax, Ax\right )=\left (Ax\right )^T\left (Ax\right )=x^TA^TAx=x^T\left (A^TA\right )x$$
How do we continue? (Wondering)
We have a matrix $A\in \mathbb{R}^{m\times n}$ which has the rank $n$. The condition number is defined as $\displaystyle{k(A)=\frac{\max_{\|x\|=1}\|Ax\|}{\min_{\|x\|=1}\|Ax\|}}$.
I want to show that $k_2(A^TA)=\left (k_2(A)\right )^2$. We have that $$k_2(A^TA)=\frac{\max_{\|x\|_2=1}\|(A^TA)x\|_2}{\min_{\|x\|_2=1}\|(A^TA)x\|_2}$$
It holds that $$\|(A^TA)x\|_2=\left ((A^TA)x, (A^TA)x\right )=\left (A^TAx\right )^T\left (A^TAx\right )=x^TA^TAA^TAx=\left (Ax\right )^T\left (AA^T\right )\left (Ax\right )$$
We also have that $$\|Ax\|_2=\left (Ax, Ax\right )=\left (Ax\right )^T\left (Ax\right )=x^TA^TAx=x^T\left (A^TA\right )x$$
How do we continue? (Wondering)