- #36
Saul
- 271
- 4
SpaceTiger said:Which patterns are these?
The theory that ellipticals formed from the mergers of spirals (which is by no means universally accepted)...
I'm not quite sure what this is supposed to mean. The angular momentum of stars and gas is sensitive to the galaxy's merger and star formation history, including stellar and AGN feedback. Since such things are difficult to simulate, we can't be sure that such discrepancies are resulting from a problem with the dark matter paradigm.
What it says. Spirals to Elliptical (Not)
The question to answer is how do spirals remain as spirals after multiple mergers. I believe observationally the percentage of galaxies that are spirals does not vary significantly with redshift. Roughly 70%. (I am looking for a paper, that I thought I read that specifically discusses the survey results. See the paper I copied above Milky Way is an exceptionally quiet galaxy.)
Spiral Galaxy Properties:
Disney et al's finding that it appears multiple disk properties are correlated to a single unknown parameter is interesting.
The angular momentum catastrophe is only one of a multiple of problems with the dark matter hypothesis. The simulations show the spirals form too early and are hence too small (roughly an order of magnitude). In addition the simulated galaxy's bulge is too large and the angular momentum distribution of the simulated galaxy does not match physical galaxies.
http://arxiv.org/PS_cache/arxiv/pdf/0908/0908.1409v1.pdf
Galactic Disk Formation and the Angular Momentum Problem
Simulations of galactic disk formation suffer often from catastrophic angular momentum loss which leads to disks with unreasonably small scale lengths and surface densities that are too large. The origin might be strong clumping of the infalling gas which looses angular momentum by dynamical friction within the surrounding dark matter halo (Navarro & Benz 1991, Navarro & Steinmetz 2000), low numerical resolution (Governato et al. 2004, 2007), substantial and major mergers (d’Onghia et al. 2006) and artificial secular angular momentum transfer from the cold disk to its hot surrounding (Okamoto et al. 2003). It has been argued that this problem might be solved by including star formation and energetic feedback (e.g. Sommer-Larsen et al. 2003, Abadi et al. 2003, Springel & Hernquist 2003, Robertson et al. 2004, Oppenheimer & Dave 2006, Dubois & Teyssier 2008). No reasonable, universally applicable feedback prescription has however yet been found that would lead to the formation of large-sized, late-type disks, not only for special cases, but in general.
http://arxiv.org/PS_cache/astro-ph/pdf/0208/0208524v1.pdf
New problems for the Formation of Disk Galaxies
Because of the overall success of these models in explaining a wide range of observed properties of disk galaxies, it has generally been assumed that the aforementioned assumptions are correct. However, several recent results have started to cast some doubt as to the validity of this standard framework. First of all, detailed hydro-dynamical simulations of disk formation in a cold dark matter (CDM) Universe yield disks that are an order of magnitude too small (e.g., Steinmetz & Navarro 1999). This problem, known as the angular momentum catastrophe, is a consequence of the hierarchical formation of galaxies which causes the baryons to lose a large fraction of their angular momentum to the dark matter.
Secondly, under assumption (iii) the density distribution of disks is a direct reflection of the AMD in the proto-galaxy. Bullock et al.(2001, hereafter B01) determined the AMDs of individual dark matter halos, which according to assumption (ii) should be identical to that of the gas, and thus to that of the disk. However, these distributions seem to have far too much low angular momentum material for consistency with the typical exponential density distributions of disk galaxies (B01; van den Bosch 2001).