- #1
Emperor42
- 15
- 0
I'm trying to prove that the discrete form of the Fourier transform is a unitary transformation
So I used the equation for the discrete Fourier transform:
##y_k=\frac{1}{\sqrt{N}}\sum^{N-1}_{j=0}{x_je^{i2\pi\frac{jk}{N}}}##
and I put the Fourier transform into a N-1 by N-1 matrix form:
##U=\begin{pmatrix}
e^0 & e^0 & e^0 & ...\\
e^0 & e^{\frac{i2\pi}{N}} & e^{\frac{i4\pi}{N}} & ...\\
e^0 & e^{\frac{i4\pi}{N}} & e^{\frac{i8\pi}{N}} & ...\\
... & ... & ... & ...\\
\end{pmatrix}##
and then found the complex conjugate:
##U^*=\begin{pmatrix}
e^0 & e^0 & e^0 & ...\\
e^0 & e^{-\frac{i2\pi}{N}} & e^{-\frac{i4\pi}{N}} & ...\\
e^0 & e^{-\frac{i4\pi}{N}} & e^{-\frac{i8\pi}{N}} & ...\\
... & ... & ... & ...\\
\end{pmatrix}##
But if I multiply these matrices together I get nothing which even approaches the identity matrix. Anyone have any ideas? Is there something wrong with the matrix?
So I used the equation for the discrete Fourier transform:
##y_k=\frac{1}{\sqrt{N}}\sum^{N-1}_{j=0}{x_je^{i2\pi\frac{jk}{N}}}##
and I put the Fourier transform into a N-1 by N-1 matrix form:
##U=\begin{pmatrix}
e^0 & e^0 & e^0 & ...\\
e^0 & e^{\frac{i2\pi}{N}} & e^{\frac{i4\pi}{N}} & ...\\
e^0 & e^{\frac{i4\pi}{N}} & e^{\frac{i8\pi}{N}} & ...\\
... & ... & ... & ...\\
\end{pmatrix}##
and then found the complex conjugate:
##U^*=\begin{pmatrix}
e^0 & e^0 & e^0 & ...\\
e^0 & e^{-\frac{i2\pi}{N}} & e^{-\frac{i4\pi}{N}} & ...\\
e^0 & e^{-\frac{i4\pi}{N}} & e^{-\frac{i8\pi}{N}} & ...\\
... & ... & ... & ...\\
\end{pmatrix}##
But if I multiply these matrices together I get nothing which even approaches the identity matrix. Anyone have any ideas? Is there something wrong with the matrix?