- #1
xylai
- 60
- 0
Quantum Arnold’s cat is a special system.
The Hamiltonian is H=p2+Kq2[tex]\delta[/tex]1(t)/2, where p[tex]\in[/tex](0,1],q[tex]\in[/tex](0,1].
The system is in an N-dimensional Hilbert space, where N=1/h.
Thus we can define : The eigenstates of [tex]\widehat{q}[/tex] are |j>, j=1,….,N, and the eigenstates of [tex]\widehat{p}[/tex] are |L>, L=1,…,N.
So [tex]\hat{q}[/tex]|j>=[tex]\frac{j}{n}[/tex]|j>, [tex]\hat{p}[/tex]|L>=[tex]\frac{L}{N}[/tex] |L>.
Now let’s obtain the eigenstates of [tex]\hat{p}[/tex].
Because [tex]\hat{p}[/tex]|L>=[tex]\frac{L}{N}[/tex] |L>, -ih[tex]\frac{d\psi(q)}{dq}[/tex]=L/N[tex]\psi(q)[/tex].
Therefor the eigenstates of [tex]\hat{p}[/tex] is [tex]\psi(q)[/tex]=exp(i2[tex]\pi[/tex]Lq).
Is it right?
The Hamiltonian is H=p2+Kq2[tex]\delta[/tex]1(t)/2, where p[tex]\in[/tex](0,1],q[tex]\in[/tex](0,1].
The system is in an N-dimensional Hilbert space, where N=1/h.
Thus we can define : The eigenstates of [tex]\widehat{q}[/tex] are |j>, j=1,….,N, and the eigenstates of [tex]\widehat{p}[/tex] are |L>, L=1,…,N.
So [tex]\hat{q}[/tex]|j>=[tex]\frac{j}{n}[/tex]|j>, [tex]\hat{p}[/tex]|L>=[tex]\frac{L}{N}[/tex] |L>.
Now let’s obtain the eigenstates of [tex]\hat{p}[/tex].
Because [tex]\hat{p}[/tex]|L>=[tex]\frac{L}{N}[/tex] |L>, -ih[tex]\frac{d\psi(q)}{dq}[/tex]=L/N[tex]\psi(q)[/tex].
Therefor the eigenstates of [tex]\hat{p}[/tex] is [tex]\psi(q)[/tex]=exp(i2[tex]\pi[/tex]Lq).
Is it right?