- #1
dpopchev
- 27
- 0
Homework Statement
We have the Einstein tensor [itex] G_{αβ} = R_{αβ} - \frac{1}{2}g_{αβ}R [/itex]
where [itex] R_{\alpha \beta}, R [/itex] are the Ricci tensor and scalar.
Homework Equations
We want the metric to be small perturbation of the flat space, so [itex] g_{\alpha \beta} = \eta_{\alpha \beta} + h_{\alpha \beta} [/itex] with [itex] h_{\alpha \beta} [/itex] is a small.
By definition we use [itex] \eta [/itex] to upper or down indexes.
So we can write [itex] R = R^\beta_\beta = \eta^{\alpha \beta} R_{\alpha \beta} [/itex]
The Attempt at a Solution
Lets substitute in above [itex] G_{\alpha \beta} = R_{\alpha \beta} - \frac{1}{2} \eta_{\alpha \beta} R = R_{\alpha \beta} - \frac{1}{2} \eta_{\alpha \beta}\eta^{\alpha \beta} R_{\alpha \beta} = R_{\alpha \beta}( 1 - \frac{1}{2} \eta^{\alpha_\beta} ) =
R_{\alpha \beta}( 1 - \frac{1}{2}tr(\eta) ) =
R_{\alpha \beta}( 1 - \frac{2}{2} ) = R_{\alpha \beta}( 1 - 1 ) = 0[/itex]
This cannot be... I seem not to see my mistake...