- #1
issacnewton
- 1,041
- 37
Hi
I have a question about the electric field of a dipole located at the origin. We know that the
coordinate free form for the electric field of a dipole is
[tex]\vec{\mathbf{E}}=\frac{1}{4\pi \epsilon_o}\frac{1}{r^3}\left[\frac{3(\vec{p}\cdot \vec{r})\vec{r}}{r^2}-\vec{p}\right] [/tex]
Now let
[tex]\vec{r}= x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}} [/tex]
be the vector of some point in space. Assume that [itex] \vec{p}=p(\hat{\mathbf{z}})[/itex].
So
[tex] \vec{p}\cdot \vec{r} = zp [/tex]
so plugging everything we get for the electric field,
[tex]\vec{\mathbf{E}}=\frac{p}{4\pi \epsilon_o}\left[\frac{3z(x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}})-(x^2+y^2+z^2)\hat{\mathbf{z}}}{(x^2+y^2+z^2)^{5/2}}\right] [/tex]
Now, if I want to get the electric field on the negative z axis, then I put x=y=0 and
z= -r , so I get
[tex]\vec{\mathbf{E}}=\frac{2p(-r)^2 \hat{\mathbf{z}}}{4\pi \epsilon_o(-r)^5} [/tex]
which is after evaluating the brackets,
[tex]\vec{\mathbf{E}}=-\frac{2p \hat{\mathbf{z}}}{4\pi \epsilon_o r^3} [/tex]
which points in the negative z direction, but if we look at the original formula for the
coordinate form of the electric field and then evaluate the electric field on the negative
z axis, it points toward the positive z direction. So what's happening here ?
thanks
I have a question about the electric field of a dipole located at the origin. We know that the
coordinate free form for the electric field of a dipole is
[tex]\vec{\mathbf{E}}=\frac{1}{4\pi \epsilon_o}\frac{1}{r^3}\left[\frac{3(\vec{p}\cdot \vec{r})\vec{r}}{r^2}-\vec{p}\right] [/tex]
Now let
[tex]\vec{r}= x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}} [/tex]
be the vector of some point in space. Assume that [itex] \vec{p}=p(\hat{\mathbf{z}})[/itex].
So
[tex] \vec{p}\cdot \vec{r} = zp [/tex]
so plugging everything we get for the electric field,
[tex]\vec{\mathbf{E}}=\frac{p}{4\pi \epsilon_o}\left[\frac{3z(x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}})-(x^2+y^2+z^2)\hat{\mathbf{z}}}{(x^2+y^2+z^2)^{5/2}}\right] [/tex]
Now, if I want to get the electric field on the negative z axis, then I put x=y=0 and
z= -r , so I get
[tex]\vec{\mathbf{E}}=\frac{2p(-r)^2 \hat{\mathbf{z}}}{4\pi \epsilon_o(-r)^5} [/tex]
which is after evaluating the brackets,
[tex]\vec{\mathbf{E}}=-\frac{2p \hat{\mathbf{z}}}{4\pi \epsilon_o r^3} [/tex]
which points in the negative z direction, but if we look at the original formula for the
coordinate form of the electric field and then evaluate the electric field on the negative
z axis, it points toward the positive z direction. So what's happening here ?
thanks