- #1
h1a8
- 87
- 4
Based off the special theory of relativity the faster an object moves then the more massive it becomes (as long as it is still under the speed of light). So based off that and the universal law of gravitation, if an object becomes more massive then does the Earth apply a stronger gravitational force to it (and it to the Earth) or does the Earth and it always apply the rest mass amount of gravitational force?
For example, if a bullet where hypothetically traveling at 99% of the speed of light just above the Earth's surface then its mass would be 7 times greater than its rest mass. Besides drag would the vertical component of the force (force of gravity) on the bullet be 7 times more than it would be if the bullet was just dropped from rest just above the Earth's surface?
For example, if a bullet where hypothetically traveling at 99% of the speed of light just above the Earth's surface then its mass would be 7 times greater than its rest mass. Besides drag would the vertical component of the force (force of gravity) on the bullet be 7 times more than it would be if the bullet was just dropped from rest just above the Earth's surface?