- #1
lriuui0x0
- 101
- 25
- Homework Statement
- Solve the laplace equation ##u_{xx} + u_{yy} = 0##, with ##x \ge 0, y \ge 0##, using Fourier transform.
Subject to the boundary conditions:
$$
\begin{aligned}
u(x, 0) &= \begin{cases}1 & 0 < x < 1 \\ 0 & \text{otherwise}\end{cases} \\
u(0, y) &= \lim_{x\to\infty} u(x,y) = \lim_{y\to\infty} u(x,y) = 0
\end{aligned}
$$
- Relevant Equations
- Fourier transform and inverse transform
I have tried to Fourier transform in ##x## and get the result in the transformed coordinates, please check my result:
$$
\tilde{u}(k, y) = \frac{1-e^{-ik}}{ik}e^{-ky}
$$
However, I'm having some problems with the inverse transform:
$$
\frac{1}{2\pi}\int_{-\infty}^\infty \frac{1-e^{-ik}}{ik}e^{-yk}dk
$$
Not sure how to do this integral. The solution says it's
$$
\frac{4xy}{\pi}\int_0^1 \frac{vdv}{[(x-v)^2+y^2][(x+v)^2+y^2]}
$$
$$
\tilde{u}(k, y) = \frac{1-e^{-ik}}{ik}e^{-ky}
$$
However, I'm having some problems with the inverse transform:
$$
\frac{1}{2\pi}\int_{-\infty}^\infty \frac{1-e^{-ik}}{ik}e^{-yk}dk
$$
Not sure how to do this integral. The solution says it's
$$
\frac{4xy}{\pi}\int_0^1 \frac{vdv}{[(x-v)^2+y^2][(x+v)^2+y^2]}
$$