- #1
squaremeplz
- 124
- 0
Homework Statement
Determine if the function is analytic and sketch where it's analytic.
a) [tex] f(x) = \frac {e^z}{z^2 + 4} [/tex]
b) [tex] f(z) = \frac {conj(z)}{|z|^2} [/tex]
c) [tex] \sum_{n=0}^\infty \frac {e^z}{3^n} (2z-4)^n [/tex]
Homework Equations
The Attempt at a Solution
a) [tex] e^z [/tex] is analytic everywhere so [tex] f(x) = \frac {e^z}{z^2 + 4} [/tex] is analytic everywhere except at
[tex] z^2 = (x + yi)^2 = -4 [/tex]
I tried separating the function into [tex] f(x,y) = u(x,y) + i*v(x,y) [/tex] but get a very complex polynomial when I try to get rid of the imaginary part in the denominator for example:
[tex] \frac {e^x (cos(y) + i*sin(y)}{(x+yi)^2 + 4} * \frac{(x-yi)^2 + 4}{(x-yi)^2 + 4} [/tex]
does not work for me
b)
[tex] f(z) = \frac{conj(z)}{ |z|^2} [/tex]
[tex] f(z) = \frac{1}{z} [/tex]
[tex] \frac{1}{z} = \frac{1}{ x+yi}[/tex]
[tex] \frac{x - yi} {x^2 + y ^2}[/tex]
[tex] = \frac{x}{x^2 + y ^2} - \frac {yi}{x^2 + y ^2}[/tex]
[tex] since \frac{du}{dx} u(x,y) = \frac{dv}{dy} u(x,y)[/tex]
and [tex] \frac{dv}{dx} u(x,y) = - \frac{dv}{dx} u(x,y) [/tex]
the function is analytic everywhere except at the origin.
d) After using the ratio test, the result I get is
[tex] |\frac{1}{3} (2z - 4) | [/tex]
[tex] \frac {1}{3} |2z - 4| [/tex]
so the function is analytic on the disk [tex] 0 < |2z - 4| < 6 [/tex] for all values n
Last edited: