- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to show that the function $f:\mathbb{R}\rightarrow \mathbb{R}$ with $f(x)=\sqrt{4+x^2}$ is continuous on $\mathbb{R}$ using the $\epsilon$, $\delta$-definition.
We have the following:
To show the continuity of $f$ we have to prove the continuity at each point $\displaystyle x_{0}\in \mathbb {R}$.
Let $x_{0}$ be an arbitrary real number.
We consider an arbitrary $\epsilon >0$.
We have to find a small enough $ \delta >0$ such that $|f(x)-f(x_{0})|<\epsilon$ for all $x$ with $|x-x_{0}|<\delta$.
First we are looking at the inequality $|f(x)-f(x_{0})|<\epsilon$ :
\begin{align*}&|f(x)-f(x_0)|<\epsilon \\ &\Rightarrow |\sqrt{4+x^2}-\sqrt{4+x_0^2}|<\epsilon\\ & \Rightarrow |\sqrt{4+x^2}-\sqrt{4+x_0^2}|\cdot \frac{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon \\ & \Rightarrow \frac{|(4+x^2)-(4+x_0^2)|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon \\ & \Rightarrow \frac{|x^2-x_0^2|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon \\ & \Rightarrow \frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon\end{align*}
It must hold that $\frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon$ for all $x$ with $|x-x_{0}|<\delta$.
So, we have to choose $\delta$ in such a way that from $|x-x_{0}|<\delta$ we get the inequality $\frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon$.
We have that \begin{equation*}\frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}\ \overset{|x-x_{0}|<\delta}{ < } \ \frac{\delta\cdot |x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}\end{equation*}
How could we choose $\delta$ ? (Wondering)
I want to show that the function $f:\mathbb{R}\rightarrow \mathbb{R}$ with $f(x)=\sqrt{4+x^2}$ is continuous on $\mathbb{R}$ using the $\epsilon$, $\delta$-definition.
We have the following:
To show the continuity of $f$ we have to prove the continuity at each point $\displaystyle x_{0}\in \mathbb {R}$.
Let $x_{0}$ be an arbitrary real number.
We consider an arbitrary $\epsilon >0$.
We have to find a small enough $ \delta >0$ such that $|f(x)-f(x_{0})|<\epsilon$ for all $x$ with $|x-x_{0}|<\delta$.
First we are looking at the inequality $|f(x)-f(x_{0})|<\epsilon$ :
\begin{align*}&|f(x)-f(x_0)|<\epsilon \\ &\Rightarrow |\sqrt{4+x^2}-\sqrt{4+x_0^2}|<\epsilon\\ & \Rightarrow |\sqrt{4+x^2}-\sqrt{4+x_0^2}|\cdot \frac{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon \\ & \Rightarrow \frac{|(4+x^2)-(4+x_0^2)|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon \\ & \Rightarrow \frac{|x^2-x_0^2|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon \\ & \Rightarrow \frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon\end{align*}
It must hold that $\frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon$ for all $x$ with $|x-x_{0}|<\delta$.
So, we have to choose $\delta$ in such a way that from $|x-x_{0}|<\delta$ we get the inequality $\frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}<\epsilon$.
We have that \begin{equation*}\frac{|x-x_0||x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}\ \overset{|x-x_{0}|<\delta}{ < } \ \frac{\delta\cdot |x+x_0|}{|\sqrt{4+x^2}+\sqrt{4+x_0^2}|}\end{equation*}
How could we choose $\delta$ ? (Wondering)