- #1
Dustinsfl
- 2,281
- 5
I want to show \(f(z) = z^{1/3}\) is analytic. I need to show that for some domain D:
(1) the partial derivatives exist in D
(2) the C-R equations are satisfied
(3) f is continuous in D
(4) the partial derivatives are continuous in D
Then f is analytic in D.
\begin{alignat*}{3}
u_x
&= \frac{x\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) +
y\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}
& \qquad
v_y &= {} \frac{x\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) +
y\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}\\
u_y
&= \frac{y\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) -
x\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}
& \qquad
v_y &= {} \frac{-y\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) +
x\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}
\end{alignat*}
Therefore, (2) is satisfied. (1) is satisfied since \(f\) is infinitely differentiable so the first partial exist. How can I determine the domain D that f is analytic in?
Is it \(\mathbb{C}-\{0\}\)?
(1) the partial derivatives exist in D
(2) the C-R equations are satisfied
(3) f is continuous in D
(4) the partial derivatives are continuous in D
Then f is analytic in D.
\begin{alignat*}{3}
u_x
&= \frac{x\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) +
y\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}
& \qquad
v_y &= {} \frac{x\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) +
y\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}\\
u_y
&= \frac{y\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) -
x\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}
& \qquad
v_y &= {} \frac{-y\cos\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big) +
x\sin\Big(\frac{1}{3}\arctan\big(\frac{y}{x}\big)\Big)}
{3(x^2 + y^2)^{5/6}}
\end{alignat*}
Therefore, (2) is satisfied. (1) is satisfied since \(f\) is infinitely differentiable so the first partial exist. How can I determine the domain D that f is analytic in?
Is it \(\mathbb{C}-\{0\}\)?
Last edited: