- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{ Verify the following given functions is a solution of the differential equation}\\ \\$
$y''''+4y'''+3y=t\\$
$y_1(t)=t/3$
\begin{align*}
(t/3)''''+4(t/3)'''+(t/3)&=t\\
0+0+t&=t
\end{align*}
$y_2(t)=e^{-t}+t/3$
\begin{align*}
(e^{-t}+t/3)''''+4(e^{-t}+t/3)'''+3(e^{-t}+t/3)&=t\\
e^{-t}-4e^{-t}+3e^{-t}+3e^{-t}+t&=t\\
t&=t
\end{align*}
so is it Raj now?
$$\tiny{\textsf{Elementary Differential Equations and Boundary Value Problems}}$$
$y''''+4y'''+3y=t\\$
$y_1(t)=t/3$
\begin{align*}
(t/3)''''+4(t/3)'''+(t/3)&=t\\
0+0+t&=t
\end{align*}
$y_2(t)=e^{-t}+t/3$
\begin{align*}
(e^{-t}+t/3)''''+4(e^{-t}+t/3)'''+3(e^{-t}+t/3)&=t\\
e^{-t}-4e^{-t}+3e^{-t}+3e^{-t}+t&=t\\
t&=t
\end{align*}
so is it Raj now?
$$\tiny{\textsf{Elementary Differential Equations and Boundary Value Problems}}$$