- #1
Shobhit
- 22
- 0
Here is an interesting integral, which I would like to share with you:
Show that
$$
\begin{align*}
\int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx&= \frac{\pi^2}{12}-\frac{3}{4}\log^2 \phi
\end{align*}
$$
where $\phi$ is the Golden Ratio.
Show that
$$
\begin{align*}
\int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx&= \frac{\pi^2}{12}-\frac{3}{4}\log^2 \phi
\end{align*}
$$
where $\phi$ is the Golden Ratio.
Last edited: