Is the Hubble Constant Constant?

  • Thread starter kmarinas86
  • Start date
  • Tags
    Cosmology
In summary, the conversation discusses the relationship between dark energy, inflation, gravitation, and the expansion of the universe. The universe is currently in an accelerating phase and the Hubble constant, which relates to the expansion rate, is increasing. This means that the universe is expanding at an increasing rate. Additionally, the value of Omega, which is a measure of the density of the universe, is changing over time and may approach 1. However, there are no contradictions in the current understanding of cosmology and the mainstream theories are considered to be accurate.
  • #1
kmarinas86
979
1
-> = implies

Dark Energy -> Repulsion

Inflation -> Repulsion

Gravitation -> Attraction

(Repulsion = Attraction -> Steady Region) & Euclidean Universe -> Light can travel on parallel lines that remain the same distance from each other :: matter, light, and energy maintaining present density
(Repulsion > Attraction -> Opening Region) & Euclidean Universe -> Light can travel on parallel lines that increase in distance from each other :: matter, light, and energy are being segregated
(Attraction > Repulsion -> Closing Region) & Euclidean Universe -> Light can travel on parallel lines that decrease the same distance from each other :: matter, light, and energy are returning

According to the Big Bang, "Since the beginning of the universe, it has been opening."

Opening Regions > Closing Regions -> Opening Universe
Closing Regions > Opening Regions -> Closing Universe

Gravitation + Inflation -> ~%15 of Omega=1 :: Opening Universe
Gravitation + Inflation + Dark Energy -> ~%100 of Omega=1 :: Accelerating Universe
exactly %100 of Omega=1 -> Hubble Constant is smaller that if Omega=0.15 instead :: Universe "is" Euclidean, not Hyperbolic
Accelerating Universe -> Opening Regions > Closing Regions -> Increasing Hubble Constant -> Universe "is" not asymptotically decelerating, and it is not reversing direction.

Spherical Balloon Analogy -> Closed Universe (a sense of "closed" independent from the size, expanding, or contracting of the balloon/universe) -> Non-Euclidean Universe

Euclidean Universe -> Light does not orbit the universe -> Spherical Balloon Analogy Uncogent

Periods of deceleration (early universe) and acceleration (late universe) -> Acceleration of the Universe is variable -> Attraction/Repulsion = not constant -> Hubble Constant is not constant -> Omega changes with time -> Omega will stop changing or Omega will continue to change

((Omega~1 (late universe) && periods of deceleration (early universe) and acceleration (late universe)) -> Omega will change) && This change is continuous not discrete -> Omega is changing right now -> If Omega is exactly 1 right now, it will cease equaling 1 in short order

Decelerating Universe -> Hubble Constant is decreasing and positive -> Omega is increasing

Accelerating Universe -> Hubble Constant is increasing and positive -> Omega is decreasing

3rd Year WMAP Observations -> Universe is perhaps slightly closed -> Omega "perhaps >" 1

Supernova Observations -> Accelerating Universe -> Hubble Constant is Increasing -> Omega is decreasing

(3rd Year WMAP Observations & Supernova Observations) -> Omega is "perhaps approaching 1 from the plus side" -> Omega >1 by a little && Hubble constant is "perhaps small" but is "evidently getting larger" -> Opening Regions > Closing Regions -> Light travels in straight lines parallel to each other which themselves are being separated from each other via the Hubble Velocity (which is increasing)

Result: No contradictions in terminology found. Mainstream cosmology "OK".
 
Space news on Phys.org
  • #2
kmarinas86 said:
Accelerating Universe -> Hubble Constant is increasing and positive

This isn't true. It is possible that a universe has accelerating expansion and a decreasing Hubble constant, and, apparently, this is true for our universe.

The proper distance [itex]D[/itex] between 2 galaxies is given by [itex]D = R \chi[/itex], where [itex]R[/itex] is the scale factor, and [itex]\chi[/itex] is the comoving coordinate distance. Thus,

[tex]\dot{D} = \dot{R} \chi = \frac{\dot{R}}{R} R \chi = H D,[/tex]

with
[tex]H = \frac{\dot{R}}{R}. [/tex]
Taking the time derivative of this last equation shows that [itex]\dot{H}[/itex] can be negative when the acceleration [itex]\ddot{R}[/itex] is positive.

Regards,
George
 
Last edited:
  • #3
George Jones said:
This isn't true. It is possible that a universe has accelerating expansion and a decreasing Hubble constant, and, apparently, this is true for our universe.

The proper distance [itex]D[/itex] between 2 galaxies is given by [itex]D = R \chi[/itex], where [itex]R[/itex] is the scale factor, and [itex]\chi[/itex] is the comoving coordinate distance. Thus,

[tex]\dot{D} = \dot{R} \chi = \frac{\dot{R}}{R} R \chi = H D,[/tex]

with

[tex]H = \frac{\dot{R}}{R} [/tex].

Taking the time derivative of this last equation shows that [itex]\dot{H}[/itex] can be negative when the acceleration [itex]\ddot{R}[/itex] is positive.

Regards,
George

I recently took higher level math courses, I want to see if I can do this derivative right:

[tex]\dot{H} = -\frac{\dot{R}}{R^2} [/tex]

Correct?

Can [tex]\dot{H}[/tex] be positive in our universe?

Also, can Omega increase in an accelerating universe?
 
Last edited:
  • #4
kmarinas86 said:
[tex]\dot{H} = -\frac{\dot{R}}{R^2} [/tex]

This isn't quite right - my notation wasn't the best. Now, I'm going to denote differentiation with respect to [itex]t[/itex] by prime. Also, [itex]R[/itex] is a function of time.

[tex]H \left( t \right) = \frac{R' \left( t \right)}{R \left( t \right)} = R' \left( t \right) R \left( t \right)^{-1}[/tex]

Now use the product rule and the chain rule to find

[tex]\frac{d H}{d t} \left( t \right) = H' \left( t \right).[/tex]

Can [tex]\dot{H}[/tex] be positive in our universe?

This seems unlikely for our universe,

Also, can Omega increase in an accelerating universe?

If [itex]\Omega < 1[/itex], then [itex]\Omega[/itex] will increase towards one in an acclerating universe.

Regards,
George
 
  • #5
George Jones said:
This isn't quite right - my notation wasn't the best. Now, I'm going to denote differentiation with respect to [itex]t[/itex] by prime. Also, [itex]R[/itex] is a function of time.

[tex]H \left( t \right) = \frac{R' \left( t \right)}{R \left( t \right)} = R' \left( t \right) R \left( t \right)^{-1}[/tex]

Now use the product rule and the chain rule to find

[tex]\frac{d H}{d t} \left( t \right) = H' \left( t \right).[/tex]
This seems unlikely for our universe,
If [itex]\Omega < 1[/itex], then [itex]\Omega[/itex] will increase towards one in an acclerating universe.

Regards,
George

I find this strange, because if the universe was accelerating, I would have expected (km/s)/Mpc to increase, not decrease.

When I do the product rule (I hope correctly), I get:

[tex]\frac{d H}{d t} \left( t \right) = -R' \left( t \right)R \left( t \right)^{-2}dt+R'' \left( t \right)R \left( t \right)^{-1}dt[/tex]

The first term is what I had originally.

[tex]dt[/tex] is positive, so it doesn't have an effect on the sign of the answer - I think.

Is [tex]R'' \left( t \right) dt[/tex] the acceleration of the expansion (m/s^2)? If it was 0, [tex]\frac{d H}{d t} \left( t \right)[/tex] would be negative, unless if [tex]R' \left( t \right)[/tex] was negative (that is, if the universe is contracting). Since the universe is expanding, [tex]R' \left( t \right)[/tex] is positive. [tex]R \left( t \right)^{-2}[/tex] has to be positive since it is an inverse square. Thus, the first term must be negative in an expanding universe. In an expanding universe, if [tex]R'' \left( t \right)[/tex], the acceleration of the expansion (m/s^2), is "large enough", that would mean [tex]\frac{d H}{d t} \left( t \right)[/tex] would positive. I think what you're saying is that is that you think [tex]R'' \left( t \right)[/tex] is not large enough - correct?

Now I get it. The universe is said to be expanding, say at velocity v. While this is happening, the radius of the universe has been increasing. Since the radius of the universe, in this case, in increasing faster than the velocity is increasing, (dist/time)/dist is getting smaller, even if velocity is increasing in the case of the accelerating universe. If the change of the velocity over time is faster than the change of the distance during that same time, then the (dist/time)/dist would increase.
 
Last edited:
  • #6
Accelerated expansion means [itex]\ddot a > 0[/itex] (strictly speaking a deceleration parameter [itex]q < 0[/itex]). You can check that an increasing Hubble parameter [itex]\dot H > 0[/itex] is equivalent to a deceleration parameter [itex]q < -1[/itex]. It can be shown that this implies a violation of the dominant energy condition (and one talks about "phantom energy").
 
Last edited:
  • #7
kmarinas86 said:
I find this strange, because if the universe was accelerating, I would have expected (km/s)/Mpc to increase, not decrease.

When I do the product rule (I hope correctly), I get:

[tex]\frac{d H}{d t} \left( t \right) = -R' \left( t \right)R \left( t \right)^{-2}dt+R'' \left( t \right)R \left( t \right)^{-1}dt[/tex]

To be strictly correct, either the [itex]dt[/itex] should be removed from the left side, or all the [itex]dt[/itex]'s should be removed from the right.

[tex]dt[/tex] is positive, so it doesn't have an effect on the sign of the answer - I think.

Is [tex]R'' \left( t \right) dt[/tex] the acceleration of the expansion (m/s^2)?

Yes, (without the [itex]dt[/itex]) it is.

If it was 0, [tex]\frac{d H}{d t} \left( t \right)[/tex] would be negative, unless if [tex]R' \left( t \right)[/tex] was negative (that is, if the universe is contracting). Since the universe is expanding, [tex]R' \left( t \right)[/tex] is positive. [tex]R \left( t \right)^{-2}[/tex] has to be positive since it is an inverse square. Thus, the first term must be negative in an expanding universe.

Yes.

In an expanding universe, if [tex]R'' \left( t \right)[/tex], the acceleration of the expansion (m/s^2), is "large enough", that would mean [tex]\frac{d H}{d t} \left( t \right)[/tex] would positive. I think what you're saying is that is that you think [tex]R'' \left( t \right)[/tex] is not large enough - correct?

Yes, and, as hellfire has noted, there are physical reasons for believing this.

Now I get it. The universe is said to be expanding, say at velocity v. While this is happening, the radius of the universe has been increasing. Since the radius of the universe, in this case, in increasing faster than the velocity is increasing, (dist/time)/dist is getting smaller, even if velocity is increasing in the case of the accelerating universe. If the change of the velocity over time is faster than the change of the distance during that same time, then the (dist/time)/dist would increase.

I think this is roughly correct.

Regards,
George
 

FAQ: Is the Hubble Constant Constant?

What is cosmology?

Cosmology is the study of the origin, evolution, and structure of the universe. It seeks to understand the fundamental laws of nature that govern the universe and the processes that have shaped it over billions of years.

What are the implications of cosmology?

The implications of cosmology are vast and far-reaching. They include understanding the formation of galaxies, the origins of the universe, the existence of dark matter and dark energy, and the potential for other universes beyond our own. Cosmology also has practical applications, such as helping us understand the origin of the elements and the potential for life beyond Earth.

What is the role of dark matter in cosmology?

Dark matter is a mysterious substance that makes up about 85% of the total matter in the universe. Its existence was first proposed to explain the observed gravitational effects on galaxies and galaxy clusters. The role of dark matter in cosmology is still not fully understood, but it plays a crucial role in shaping the structure and evolution of the universe.

How does cosmology contribute to our understanding of the Big Bang theory?

Cosmology has provided strong evidence for the Big Bang theory, which states that the universe began with a massive explosion about 13.8 billion years ago. Through studying the cosmic microwave background radiation, the distribution of galaxies, and the expansion of the universe, cosmologists have been able to support and refine this theory.

What are the current challenges in cosmology?

There are many open questions and challenges in cosmology that scientists are currently working to address. These include understanding the nature of dark matter and dark energy, reconciling the theories of general relativity and quantum mechanics, and determining the ultimate fate of the universe. Additionally, there are ongoing efforts to gather more precise data and develop new technologies to further our understanding of the cosmos.

Similar threads

Replies
3
Views
1K
Replies
11
Views
2K
Replies
25
Views
2K
Replies
18
Views
2K
Replies
26
Views
3K
Back
Top