- #1
Leditto
- 4
- 0
Let ##V## be a quaternionic vector space with quaternionic structure ##\{I,J,K\}##. One can define a Riemannian metric ##G## and hyperkahler structure ##\{\Omega^{I},\Omega^{J}, \Omega^{K}\}##. Do this inner product
$$\langle p,q \rangle := G(p,q)+i\Omega^{I}(p,q)+j\Omega^{J}(p,q)+k\Omega^{K}(p,q)$$
really satisfy hyperhermitian condition?
$$\langle p,q \rangle := G(p,q)+i\Omega^{I}(p,q)+j\Omega^{J}(p,q)+k\Omega^{K}(p,q)$$
really satisfy hyperhermitian condition?