- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Let $A$ and $B$ be $n\times n$ matrices with real entries. Show that $\langle A\mathbf{u},B\mathbf{v}\rangle = \langle \mathbf{u}, A^TB\mathbf{v}\rangle$ for any vectors $\mathbf{v},\mathbf{w}\in\mathbb{R}^n$, where $\langle\cdot,\cdot\rangle$ denotes the standard inner product on $\mathbb{R}^n$.
-----
-----
Problem: Let $A$ and $B$ be $n\times n$ matrices with real entries. Show that $\langle A\mathbf{u},B\mathbf{v}\rangle = \langle \mathbf{u}, A^TB\mathbf{v}\rangle$ for any vectors $\mathbf{v},\mathbf{w}\in\mathbb{R}^n$, where $\langle\cdot,\cdot\rangle$ denotes the standard inner product on $\mathbb{R}^n$.
-----